skip to main content


Search for: All records

Creators/Authors contains: "Ramsay, Hamish A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Abstract Seasonal predictions of tropical cyclone (TC) landfalls are challenging because seasonal landfall count not only depends on the number and spatial distribution of TC genesis, but also whether those TCs are steered toward land or not. Past studies have separately examined genesis and landfall as a function of large-scale ocean and atmospheric environmental conditions. Here, we introduce a practical statistical framework for estimating the seasonal count of TC landfalls as the product of a Poisson model for seasonal TC genesis and a logistic model for landfall probability. We compute spatial variations in TC landfall and genesis by decomposing TC activity in the western North Pacific (WNP) basin into 10° × 10° bins, then identify coherent regions where El Niño–Southern Oscillation (ENSO) and the western extent of the Pacific subtropical high (WPSH) have significant influences on seasonal landfall count. Our framework shows that ENSO and the WPSH are weakly related to basinwide landfalls but strongly related to regional genesis and landfall probability. ENSO modulates the zonal distribution of TC genesis, consistent with past work, whereas the WPSH modulates the meridional distribution of landfall probability due to variations in steering flow associated with the Pacific subtropical high. These spatial patterns result in four coherent subregions of the WNP basin that define seasonal landfall variations: landfall count increases in the southwestern WNP during a positive WPSH and La Niña, the south-central WNP during a positive WPSH and El Niño, the eastern WNP during a negative WPSH and El Niño, and the northern WNP during a negative WPSH and La Niña. 
    more » « less
  3. Abstract Assessing the role of anthropogenic warming from temporally inhomogeneous historical data in the presence of large natural variability is difficult and has caused conflicting conclusions on detection and attribution of tropical cyclone (TC) trends. Here, using a reconstructed long-term proxy of annual TC numbers together with high-resolution climate model experiments, we show robust declining trends in the annual number of TCs at global and regional scales during the twentieth century. The Twentieth Century Reanalysis (20CR) dataset is used for reconstruction because, compared with other reanalyses, it assimilates only sea-level pressure fields rather than utilize all available observations in the troposphere, making it less sensitive to temporal inhomogeneities in the observations. It can also capture TC signatures from the pre-satellite era reasonably well. The declining trends found are consistent with the twentieth century weakening of the Hadley and Walker circulations, which make conditions for TC formation less favourable. 
    more » « less
  4. Abstract

    There is currently no theory for the rate of tropical cyclone (TC) formation given a particular climate, so our understanding of the relationship between TC frequency and large‐scale environmental factors is largely empirical. Here, we explore the sensitivity of TC formation and intensification rates to climate warming in a series of highly idealized cloud‐permitting simulations, in which TCs form spontaneously from a base state of rest on anf‐plane. The simulations reveal a nonmonotonic relationship between the time taken for a TC precursor disturbance (a “seed”) to form and the prescribed sea surface temperature (SST), with moderately long seed emergence times at both ends of the SST range tested (292 and 304 K) and a shorter seed emergence time at the middle value of SST (298 K). Genesis potential indices (GPIs) exhibit a different response to warming: either a monotonic increase if the potential intensity and midtropospheric relative humidity are used or relatively little sensitivity if the saturation deficit is used as the humidity variable. The sensitivity of elapsed time between a TC seed disturbance and TC genesis to surface warming is, however, generally well captured by GPIs, especially those that depend on the saturation deficit. The maximum intensification rate of TCs increases strongly with warming, particularly during the second half of the intensification process. Notably, storms intensify much more rapidly with increasing temperature than is predicted by extant theory based on potential intensity, suggesting that TCs in a warmer climate may intensify even more rapidly than recent studies suggest.

     
    more » « less
  5. Reliable projections of future changes in tropical cyclone (TC) characteristics are highly dependent on the ability of global climate models (GCMs) to simulate the observed characteristics of TCs (i.e., their frequency, genesis locations, movement, and intensity). Here, we investigate the performance of a suite of GCMs from the U.S. CLIVAR Working Group on Hurricanes in simulating observed climatological features of TCs in the Southern Hemisphere. A subset of these GCMs is also explored under three idealized warming scenarios. Two types of simulated TC tracks are evaluated on the basis of a commonly applied cluster analysis: 1) explicitly simulated tracks, and 2) downscaled tracks, derived from a statistical–dynamical technique that depends on the models’ large-scale environmental fields. Climatological TC properties such as genesis locations, annual frequency, lifetime maximum intensity (LMI), and seasonality are evaluated for both track types. Future changes to annual frequency, LMI, and the latitude of LMI are evaluated using the downscaled tracks where large sample sizes allow for statistically robust results. An ensemble approach is used to assess future changes of explicit tracks owing to their small number of realizations. We show that the downscaled tracks generally outperform the explicit tracks in relation to many of the climatological features of Southern Hemisphere TCs, despite a few notable biases. Future changes to the frequency and intensity of TCs in the downscaled simulations are found to be highly dependent on the warming scenario and model, with the most robust result being an increase in the LMI under a uniform 2°C surface warming.

     
    more » « less